Athermalization of the Lasing Wavelength in Vertical-Cavity Surface-Emitting Lasers
Artikel i vetenskaplig tidskrift, 2023

A concept for vertical-cavity surface-emitting lasers (VCSELs) is proposed and demonstrated to obtain a lasing wavelength with unprecedented temperature stability. The concept is based on incorporating a dielectric material with a negative thermo-optic coefficient, dn/dT, in the distributed Bragg reflectors (DBRs) to compensate the positive dn/dT of the semiconductor cavity. In a short cavity, the optical field has a significant overlap with the DBRs, and the redshift of the lasing wavelength caused by the semiconductor cavity can be compensated by the negative dn/dT of the DBRs. Here, proof of this concept is presented for optically-pumped VCSELs emitting at 310 nm, demonstrating a lasing wavelength that even blueshifts by less than 0.1 nm over an 80 °C range with a maximum slope of –3.4 pm K−1. This is to be compared with a redshift of 1–1.5 nm over the same temperature range reported for III-nitride blue-emitting VCSELs. Furthermore, this method can also be implemented in VCSELs with longer cavity lengths by including a dielectric layer between the semiconductor and the DBR. The approach used here to obtain a temperature-stable lasing wavelength is generic and can therefore be applied to VCSELs in all material systems and lasing wavelengths.

dielectric DBR

wavelength stability

vertical-cavity surface-emitting lasers

electrochemical etching

ultraviolet

UVB

AlGaN

Författare

Lars Persson

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Filip Hjort

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

G. Cardinali

Technische Universität Berlin

Johannes Enslin

Technische Universität Berlin

Tim Kolbe

Ferdinand-Braun-Institut fur Hochstfrequenztechnik

Tim Wernicke

Technische Universität Berlin

Michael Kneissl

Ferdinand-Braun-Institut fur Hochstfrequenztechnik

Technische Universität Berlin

Joachim Ciers

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Åsa Haglund

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Laser and Photonics Reviews

1863-8880 (ISSN) 1863-8899 (eISSN)

Vol. 17 8 2300009

Microcavity laser breakthrough for ultraviolet light (UV-LASE)

Europeiska kommissionen (EU) (EC/H2020/865622), 2020-08-01 -- 2025-07-31.

Ämneskategorier

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

DOI

10.1002/lpor.202300009

Mer information

Senast uppdaterat

2024-03-07