Crossroads at the Origin of Prebiotic Chemical Complexity: Hydrogen Cyanide Product Diversification
Artikel i vetenskaplig tidskrift, 2023

Products of hydrogen cyanide (HCN) reactivity are suspected to play important roles in astrochemistry and, possibly, the origin of life. The composition, chemical structure, and mechanistic details for formation of products from HCN's self-reactions have, however, proven elusive for decades. Here, we elucidate base-catalyzed reaction mechanisms for the formation of diaminomaleonitrile and polyimine in liquid HCN using ab initio molecular dynamics simulations. Both materials are proposed as key intermediates for driving further chemical evolution. The formation of these materials is predicted to proceed at similar rates, thereby offering an explanation of how HCN's self-reactions can diversify quickly under kinetic control. Knowledge of these reaction routes provides a basis for rationalizing subsequent reactivity in astrochemical environments such as on Saturn's moon Titan, in the subsurface of comets, in exoplanet atmospheres, and on the early Earth.

Författare

Hilda Sandström

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Martin Rahm

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Journal of Physical Chemistry A

1089-5639 (ISSN) 1520-5215 (eISSN)

Vol. 127 20 4503-4510

Beräkning av astrobiologi: makromolekylernas uppkomst

Vetenskapsrådet (VR) (2020-04305), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Astronomi, astrofysik och kosmologi

Teoretisk kemi

DOI

10.1021/acs.jpca.3c01504

PubMed

37166122

Mer information

Senast uppdaterat

2023-06-16