MUTAGEN: Reliable Coverage-Guided, Property-Based Testing using Exhaustive Mutations
Paper i proceeding, 2023

Automatically-synthesized random data generators are an appealing option when using property-based testing. There exists a variety of techniques that extract static information from the codebase to produce random test cases. Unfortunately, such techniques cannot enforce the complex invariants often needed to test properties with sparse preconditions.Coverage-guided, property-based testing (CGPT) tackles this limitation by enhancing synthesized generators with structure-preserving mutations guided by execution traces. Albeit effective, CGPT relies largely on randomness and exhibits poor scheduling, which can prevent bugs from being found.We present MUTAGEN, a CGPT framework that tackles such limitations by generating mutants exhaustively. Our tool incorporates heuristics that help to minimize scalability issues as well as cover the search space in a principled manner. Our evaluation shows that MUTAGEN not only outperforms existing CGPT tools but also finds previously unknown bugs in real-world software.

heuristics

mutations

random testing

Författare

Claudio Agustin Mista

Chalmers, Data- och informationsteknik, Informationssäkerhet

Alejandro Russo

Chalmers, Data- och informationsteknik, Informationssäkerhet

Proceedings - 2023 IEEE 16th International Conference on Software Testing, Verification and Validation, ICST 2023

176-187
9781665456661 (ISBN)

16th IEEE International Conference on Software Testing, Verification and Validation, ICST 2023
Dublin, Ireland,

WebSec: Säkerhet i webb-drivna system

Stiftelsen för Strategisk forskning (SSF) (RIT17-0011), 2018-03-01 -- 2023-02-28.

Octopi: Säker Programering för Sakernas Internet

Stiftelsen för Strategisk forskning (SSF) (RIT17-0023), 2018-03-01 -- 2023-02-28.

Ämneskategorier (SSIF 2011)

Programvaruteknik

Datavetenskap (datalogi)

Datorsystem

DOI

10.1109/ICST57152.2023.00025

Mer information

Senast uppdaterat

2025-01-23