Link between interlayer hybridization and ultrafast charge transfer in WS2-graphene heterostructures
Artikel i vetenskaplig tidskrift, 2023

Ultrafast charge separation after photoexcitation is a common phenomenon in various van-der-Waals (vdW) heterostructures with great relevance for future applications in light harvesting and detection. Theoretical understanding of this phenomenon converges towards a coherent mechanism through charge transfer states accompanied by energy dissipation into strongly coupled phonons. The detailed microscopic pathways are material specific as they sensitively depend on the band structures of the individual layers, the relative band alignment in the heterostructure, the twist angle between the layers, and interlayer interactions resulting in hybridization. We used time- and angle-resolved photoemission spectroscopy combined with tight binding and density functional theory electronic structure calculations to investigate ultrafast charge separation and recombination in WS2-graphene vdW heterostructures. We identify several avoided crossings in the band structure and discuss their relevance for ultrafast charge transfer. We relate our own observations to existing theoretical models and propose a unified picture for ultrafast charge transfer in vdW heterostructures where band alignment and twist angle emerge as the most important control parameters.

tight binding band structure calculations

time- and angle-resolved photoemission spectroscopy

ultrafast charge transfer

van-der-Waals heterostructures

density functional theory

Författare

Niklas Hofmann

Universität Regensburg

Leonard Weigl

Universität Regensburg

Johannes Gradl

Universität Regensburg

Neeraj Mishra

Center for Nanotechnology Innovation (CNI)

Istituto Italiano di Tecnologia

Giorgio Orlandini

Center for Nanotechnology Innovation (CNI)

Stiven Forti

Center for Nanotechnology Innovation (CNI)

Camilla Coletti

Center for Nanotechnology Innovation (CNI)

Istituto Italiano di Tecnologia

Simone Latini

Danmarks Tekniske Universitet (DTU)

Lede Xian

Songshan Lake Materials Laboratory

Angel Rubio

Max-Planck-Gesellschaft

Dilan Perez Paredes

Philipps-Universität Marburg

Raul Perea Causin

Chalmers, Fysik, Kondenserad materie- och materialteori

Samuel Brem

Philipps-Universität Marburg

Ermin Malic

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserad materie- och materialteori

I. Gierz

Universität Regensburg

2D Materials

2053-1583 (eISSN)

Vol. 10 3 035025

Ämneskategorier

Infrastrukturteknik

Den kondenserade materiens fysik

DOI

10.1088/2053-1583/acdaab

Mer information

Senast uppdaterat

2023-07-07