High-Q Trampoline Resonators from Strained Crystalline InGaP for Integrated Free-Space Optomechanics
Artikel i vetenskaplig tidskrift, 2023

Nanomechanical resonators realized from tensile-strained materials reach ultralow mechanical dissipation in the kHz to MHz frequency range. Tensile-strained crystalline materials that are compatible with epitaxial growth of heterostructures would thereby at the same time allow realizing monolithic free-space optomechanical devices, which benefit from stability, ultrasmall mode volumes, and scalability. In our work, we demonstrate nanomechanical string and trampoline resonators made from tensile-strained InGaP, which is a crystalline material that is epitaxially grown on an AlGaAs heterostructure. We characterize the mechanical properties of suspended InGaP nanostrings, such as anisotropic stress, yield strength, and intrinsic quality factor. We find that the latter degrades over time. We reach mechanical quality factors surpassing 107 at room temperature with a Q·f product as high as 7 × 1011Hz with trampoline-shaped resonators. The trampoline is patterned with a photonic crystal to engineer its out-of-plane reflectivity, desired for efficient signal transduction of mechanical motion to light.

nanomechanics

optomechanics

photonic crystal

InGaP

radiation loss

high stress

Författare

Sushanth Kini Manjeshwar

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Anastasiia Ciers

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Fia Hellman

Student vid Chalmers

Jürgen Bläsing

Otto von Guericke Universitaet Magdeburg

André Strittmatter

Otto von Guericke Universitaet Magdeburg

Witlef Wieczorek

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Nano Letters

1530-6984 (ISSN) 1530-6992 (eISSN)

Vol. 23 11 5076-5082

Ickelinjär koppling mellan ljus och mekaniska vibrationer för experiment inom kvantoptik och kvantsensorer

Vetenskapsrådet (VR) (2019-04946), 2020-01-01 -- 2023-12-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Annan materialteknik

Den kondenserade materiens fysik

DOI

10.1021/acs.nanolett.3c00996

PubMed

37234019

Mer information

Senast uppdaterat

2023-07-06