Okounkov Bodies and the Kähler Geometry of Projective Manifolds
Paper i proceeding, 2023

Given a projective manifold X equipped with an ample line bundle L, we show how to embed certain torus-invariant domains D⊆ Cn into X so that the Euclidean Kähler form on D extends to a Kähler form on X lying in the first Chern class of L. This is done using Okounkov bodies Δ (L), and the image of D under the standard moment map will approximate Δ (L). This means that the volume of D can be made to approximate the Kähler volume of X arbitrarily well. As a special case we can let D be an ellipsoid. We also have similar results when L is just big.

Okounkov bodies

Kahler currents

Författare

David Witt Nyström

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Springer Proceedings in Mathematics and Statistics

21941009 (ISSN) 21941017 (eISSN)

Vol. 409 617-632
9783031178580 (ISBN)

International Conference on Birational Geometry, Kaehler-Einstein Metrics and Degenerations, BGKEMD 2019
Moscow, Russia,

Ämneskategorier

Algebra och logik

Geometri

DOI

10.1007/978-3-031-17859-7_31

Mer information

Senast uppdaterat

2024-01-03