Upscaling of chemo-mechanical properties of battery electrode material
Artikel i vetenskaplig tidskrift, 2023

A variationally consistent model-based computational homogenization approach for transient chemo- mechanically coupled problems is developed based on the classical assumption of first order prolongation of the displacement and chemical potential fields within a Representative Volume Element (RVE). An upscaling procedure is introduced that is based on the assumption of micro-stationarity for the RVE problem. This is motivated by sufficient separation of time-scales. Periodic boundary conditions on the pertinent fields provide the general variational setting for the uniquely solvable RVE-problems. Due to the assumed linearity and micro-stationary, it is possible to use the pertinent sensitivity analysis for the RVE in order to derive effective macro-scale properties in closed form: the elastic stiffness, the insertion strain tensor and the mobility tensor. Statistically representative results are obtained by considering a sufficient number of RVE-realizations with varying volume fractions of the constituents. With the application to structural batteries in mind, a numerical study is conducted for a three-phase RVE microstructure representing a battery electrode material.

Variationally consistent homogenization

Chemo-mechanical coupling

Battery electrode

Effective properties

Författare

D. R. Rollin

Technische Universität Braunschweig

Fredrik Larsson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Kenneth Runesson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

R. Janicke

Technische Universität Braunschweig

International Journal of Solids and Structures

0020-7683 (ISSN)

Vol. 281 112405

Beräkningsbaserad modellering av elektrokemisk aktuation av en klass av kolfiber-kompositer

Vetenskapsrådet (VR) (2020-05057), 2021-01-01 -- 2024-12-31.

Drivkrafter

Hållbar utveckling

Ämneskategorier

Energiteknik

Beräkningsmatematik

Annan materialteknik

Styrkeområden

Energi

Materialvetenskap

DOI

10.1016/j.ijsolstr.2023.112405

Mer information

Senast uppdaterat

2023-08-03