Accelerating variational quantum eigensolver convergence using parameter transfer
Artikel i vetenskaplig tidskrift, 2023

One impediment to the useful application of variational quantum algorithms in quantum chemistry is slow convergence with large numbers of classical optimization parameters. In this work, we evaluate a quantum computational warm-start approach for potential energy surface calculations. Our approach, which is inspired by conventional computational methods, is evaluated using simulations of the variational quantum eigensolver. Significant speedup is demonstrated relative to calculations that rely on a Hartree-Fock initial state, both for ideal and sampled simulations. The general approach of transferring parameters between similar problems is promising for accelerating current and near-term quantum chemistry calculations on quantum hardware, and is likely applicable beyond the tested algorithm and use case.

quantum computation

quantum chemistry

potential energy surfaces

Författare

Mårten Skogh

Chalmers, Kemi och kemiteknik, Kemi och biokemi

AstraZeneca AB

Oskar Leinonen

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Universitetet i Oslo

Phalgun Lolur

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Martin Rahm

STFC Rutherford Appleton Laboratory

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Electronic Structure

25161075 (eISSN)

Vol. 5 3 035002

An Open Superconducting Quantum Computer (OpenSuperQ)

Europeiska kommissionen (EU) (EC/H2020/820363), 2018-10-01 -- 2021-09-30.

Ämneskategorier

Beräkningsmatematik

Annan fysik

Teoretisk kemi

Datavetenskap (datalogi)

DOI

10.1088/2516-1075/ace86d

Relaterade dataset

Accelerating Variational Quantum Eigensolver Convergence using Parameter Transfer [dataset]

DOI: 10.5878/fvza-z272

Mer information

Senast uppdaterat

2023-11-06