Link-INVENT: generative linker design with reinforcement learning
Artikel i vetenskaplig tidskrift, 2023

In this work, we present Link-INVENT as an extension to the existing de novo molecular design platform REINVENT. We provide illustrative examples on how Link-INVENT can be applied to fragment linking, scaffold hopping, and PROTAC design case studies where the desirable molecules should satisfy a combination of different criteria. With the help of reinforcement learning, the agent used by Link-INVENT learns to generate favourable linkers connecting molecular subunits that satisfy diverse objectives, facilitating practical application of the model for real-world drug discovery projects. We also introduce a range of linker-specific objectives in the Scoring Function of REINVENT. The code is freely available at https://github.com/MolecularAI/Reinvent.

Författare

Jeff Guo

AstraZeneca AB

Franziska Knuth

AstraZeneca AB

Norges teknisk-naturvitenskapelige universitet

Christian Margreitter

AstraZeneca AB

Jon Paul Janet

AstraZeneca AB

Kostas Papadopoulos

AstraZeneca AB

Ola Engkvist

Chalmers, Data- och informationsteknik

AstraZeneca AB

Atanas Patronov

AstraZeneca AB

Digital Discovery

2635098X (eISSN)

Vol. 2 2 392-408

Ämneskategorier

Datavetenskap (datalogi)

Datorsystem

DOI

10.1039/d2dd00115b

Mer information

Senast uppdaterat

2023-09-05