Modeling of environmentally assisted intergranular crack propagation in polycrystals
Artikel i vetenskaplig tidskrift, 2023

Polycrystalline nickel-based superalloys experience accelerated intergranular crack growth when exposed to dwell times in oxygen-rich environments and a combination of high temperature and tensile mechanical loading. Increasing crack growth rates are observed for increasing amounts of environmental oxygen in a certain oxygen concentration range, while below and above that range crack growth rates remain approximately constant. A fully coupled chemo-mechanical modeling framework accounting for the degradation of grain boundaries by oxygen has been presented by the authors. In this work, we expand the framework by a moving boundary condition to capture a realistic oxygen flux in grain boundary cracks for both edge cracks connected to the environment and interior cracks. In numerical simulation results, the behavior of the moving boundary condition is shown for intergranular crack propagation through a polycrystal subjected to cyclic loading. Finally, the capabilities of the modeling framework to qualitatively predict the dependence of the average crack growth rate on the environmental oxygen content, load level, and dwell time are evaluated and it is shown that predictions qualitatively agree with experimental observations for intergranular fracture.

environmentally assisted fracture

grain boundaries

polycrystalline material

stress-assisted oxidation

crack growth rate

cyclic loading

Författare

Kim Louisa Auth

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Jim Brouzoulis

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Magnus Ekh

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

International Journal for Numerical Methods in Engineering

0029-5981 (ISSN) 1097-0207 (eISSN)

Vol. 124 23 5183-5199

Beräkningsbaserad modellering av kristallplasticitet och intergranulär dekohesion kopplad till spänningsassisterad oxidation i polykristallina högtemperaturlegeringar

Vetenskapsrådet (VR) (2018-04318), 2019-01-01 -- 2023-12-31.

Ämneskategorier (SSIF 2011)

Teknisk mekanik

Metallurgi och metalliska material

DOI

10.1002/nme.7346

Mer information

Senast uppdaterat

2024-03-07