On some double Nahm sums of Zagier
Artikel i vetenskaplig tidskrift, 2024

Zagier provided eleven conjectural rank two examples for Nahm's problem. All of them have been proved in the literature except for the fifth example, and there is no q-series proof for the tenth example. We prove that the fifth and the tenth examples are in fact equivalent. Then we give a q-series proof for the fifth example, which confirms a recent conjecture of Wang. This also serves as the first q-series proof for the tenth example, whose explicit form was conjectured by Vlasenko and Zwegers in 2011 and whose modularity was proved by Cherednik and Feigin in 2013 via nilpotent double affine Hecke algebras.

Constant term method

Sum-product identities

Nahm sums

Rogers–Ramanujan identities

Författare

Zhineng Cao

Wuhan University

Hjalmar Rosengren

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Liuquan Wang

Wuhan University

Journal of Combinatorial Theory - Series A

0097-3165 (ISSN) 10960899 (eISSN)

Vol. 202 105819

Kombinatorik för elliptiska gittermodeller

Vetenskapsrådet (VR) (2020-04221), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Matematisk analys

DOI

10.1016/j.jcta.2023.105819

Mer information

Senast uppdaterat

2023-10-20