Deterministic generation of shaped single microwave photons using a parametrically driven coupler
Artikel i vetenskaplig tidskrift, 2023

A distributed quantum computing system requires a quantum communication channel between spatially separated processing units. In superconducting circuits, such a channel can be realized by using propagating microwave photons to encode and transfer quantum information between an emitter and a receiver node. Here we experimentally demonstrate a superconducting circuit that deterministically transfers the state of a data qubit into a propagating microwave mode, with a process fidelity of 94.5%. We use a time-varying parametric drive to shape the temporal profile of the propagating mode to be time symmetric and with constant phase, so that reabsorption by the receiving processor can be implemented as a time-reversed version of the emission. We demonstrate a self-calibrating routine to correct for time-dependent shifts of the emitted frequencies due to the modulation of the parametric drive. Our work provides a reliable method to implement high-fidelity quantum state transfer and remote entanglement operations in a distributed quantum computing network.

Författare

Jiaying Yang

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Ericsson AB

Axel Eriksson

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Aamir Ali

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Ingrid Strandberg

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Claudia Castillo-Moreno

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Daniel Perez Lozano

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Interuniversity Micro-Electronics Center at Leuven

Per Persson

Ericsson AB

Simone Gasparinetti

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Physical Review Applied

2331-7019 (eISSN)

Vol. 20 5 054018

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevApplied.20.054018

Mer information

Senast uppdaterat

2023-11-22