A Discontinuous Galerkin Approach for Stabilized Maxwell’s Equations in Pseudo-Frequency Domain
Paper i proceeding, 2023

This paper concerns the study of a stabilized discontinuous Galerkin finite element method for the Maxwell’s equations in pseudo-frequency domain obtained through Laplace transformation in time. The model problem is considered in the special case assuming constant dielectric permittivity function in a boundary neighborhood. The discontinuous Galerkin finite element method (DGFEM) is formulated and the convergence is addressed in a priori setting where we derive optimal order error bound of the scheme in a L2 -based triple norm. Finally, our numerical examples confirm predicted convergence of the proposed scheme.

Convergence

Stability

DG finite element method

A priori estimate

Maxwell’s equations

Laplace transform

Författare

Mohammad Asadzadeh

Chalmers, Matematiska vetenskaper

Larisa Beilina

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Springer Proceedings in Mathematics and Statistics

21941009 (ISSN) 21941017 (eISSN)

Vol. 429 75-92
9783031358708 (ISBN)

Annual workshops for Swedish Alumni Club of Japan Society for the Promotion of Science, JSPS/SAC 2021 and 2022
Virtual, Online, ,

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

DOI

10.1007/978-3-031-35871-5_5

Mer information

Senast uppdaterat

2024-01-03