A Posteriori Error Estimates and Adaptive Error Control for Permittivity Reconstruction in Conductive Media
Paper i proceeding, 2023

An inverse problem of reconstruction of the spatially distributed dielectric permittivity function in the Maxwell’s system is considered. The reconstruction method is based on the optimization approach to find stationary point of the Tikhonov functional. A posteriori estimates for the corresponding Tikhonov functional and for the reconstructed dielectric permittivity function are derived. Based on these estimates two adaptive conjugate gradient algorithms are formulated. Our numerical tests show feasibility of application of an adaptive optimization algorithm for reconstruction of dielectric permittivity function using anatomically realistic breast phantom of MRI database produced in University of Wisconsin [53].

Tikhonov functional

Lagrangian approach

Coefficient inverse problem

Adaptive finite element method

Domain decomposition

Maxwell’s equations

Conductive media

Författare

Larisa Beilina

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Eric Lindström

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Springer Proceedings in Mathematics and Statistics

21941009 (ISSN) 21941017 (eISSN)

Vol. 429 117-141
9783031358708 (ISBN)

Annual workshops for Swedish Alumni Club of Japan Society for the Promotion of Science, JSPS/SAC 2021 and 2022
Virtual, Online, ,

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

DOI

10.1007/978-3-031-35871-5_7

Mer information

Senast uppdaterat

2024-01-03