The electron density: a fidelity witness for quantum computation
Artikel i vetenskaplig tidskrift, 2023

There is currently no combination of quantum hardware and algorithms that can provide an advantage over conventional calculations of molecules or materials. However, if or when such a point is reached, new strategies will be needed to verify predictions made using quantum devices. We propose that the electron density, obtained through experimental or computational means, can serve as a robust benchmark for validating the accuracy of quantum computation of chemistry. An initial exploration into topological features of electron densities, facilitated by quantum computation, is presented here as a proof of concept. Additionally, we examine the effects of constraining and symmetrizing measured one-particle reduced density matrices on noise-driven errors in the electron density distribution. We emphasize the potential benefits and future need for high-quality electron densities derived from diffraction experiments for validating classically intractable quantum computations of materials.

Författare

Mårten Skogh

Chalmers, Kemi och kemiteknik, Kemi och biokemi

AstraZeneca AB

Werner Barucha-Dobrautz

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Phalgun Lolur

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Christopher Warren

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Janka Biznárová

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Amr Osman

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Giovanna Tancredi

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Jonas Bylander

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Martin Rahm

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Chemical Science

2041-6520 (ISSN) 2041-6539 (eISSN)

Vol. 15 6 2257-2265

Ämneskategorier

Teoretisk kemi

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1039/d3sc05269a

Relaterade dataset

The Electron Density: A Fidelity Witness for Quantum Computation [dataset]

DOI: 10.5878/0n2y-dp56

Mer information

Senast uppdaterat

2024-08-09