Characterization of the in vivo mechanisms of action of cell envelope-targeting antibiotics
Doktorsavhandling, 2024

Multidrug-resistant bacteria pose a major threat to society. Once easily treatable diseases are now challenging to cure. With the golden age of antibiotics being over, the discovery of new antibiotics has been stagnant, and no new antibiotic class has been introduced into the clinic since 2003. Therefore, it is crucial to discover new antibiotics and to optimize existing antimicrobial compounds.

This thesis aims to provide more information on the mechanisms of antibiotics on living bacteria and can be divided into two parts. One part provides detailed information on techniques that can be utilized to study the mode of action of new antibiotic compounds. Here, methods are discussed in detail and curated to a method set that can be easily utilized by other researchers. The curated assays were then applied, and a phenotypic reference set was created. In the second part, these methods were used to investigate the mechanisms of new antimicrobial compounds and lead structures to provide important information for their further development.

The fluorescence dyes laurdan, Nile red, and DiIC12 that are able to track fluidity changes in the bacterial membranes in response to antibiotic treatment were described. In addition to the detailed protocols and their evaluation, the methods were applied to investigate the effects of daptomycin. These methods were able to detect that daptomycin changes the overall membrane fluidity differently in B. subtilis and S. aureus. Furthermore, I have successfully applied the curated methods, consisting of BCP, membrane potential (DiSC3(5), and cell wall synthesis assays (MreB mobility and PliaI) to study several new compounds, e.g., antimicrobial peptides from marine streptomycetes. Two of these new antimicrobial peptides led to the consecutive permeabilization of the outer and inner membrane in E. coli. Interestingly, they also affected DNA packing. Further, an in-depth study of a new promising drug candidate, ES24, was conducted, showing its unique target of the Sec-secretion pathway and an additional DNA-damaging effect.

Overall, this thesis provides important insights into the techniques used in mode of action studies, describes an easily accessible method set for other researchers, and provides important information on the modes of action of new antimicrobial compounds.

Mode of action, cell-envelope targeting, antibiotics, antimicrobial peptides

Mode of action

antimicrobial peptides

cell-envelope targeting

antibiotics

10’an (floor 10), Chemistry Building, Kemigården 4, Chalmers Campus Johanneberg, Gothenburg.
Opponent: Heike Brötz-Oesterhelt, University of Tübingen, Germany.

Författare

Ann-Britt Schäfer

Chalmers, Life sciences, Kemisk biologi

Schäfer, A., Sidarta, M., Abdelmesseh Nekhala, I. , Righetto, G. M., Arshad, A., and Wenzel, M., Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: A phenotypic analysis starter kit (in print, Journal: Microbiology Spectrum, doi:10.1128/spectrum.03275-23)

Mimicking Nonribosomal Peptides from the Marine Actinomycete Streptomyces sp. H-KF8 Leads to Antimicrobial Peptides

ACS Infectious Diseases,;Vol. 10(2024)p. 79-92

Artikel i vetenskaplig tidskrift

Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA

ACS Infectious Diseases,;Vol. 9(2023)p. 253-269

Artikel i vetenskaplig tidskrift

Bakterieinfektioner kan normalt behandlas med antibiotika. Men många bakterier har tyvärr blivit resistenta mot antibiotika. Därför blir alltfler bakterinfektioner svåra att behandla. Prognoser förutspår att om 25 år kommer cirka 10 miljoner människor per år att dö av bakterieinfektioner om inga åtgärder vidtas. Därför är det jätteviktigt att upptäcka och utveckla nya och att optimera redan existerande antibiotika.

Bakterier anpassar sig hela tiden till antibiotika genom att förändra cellstrukturen. Det är detta som leder till resistens och att antibiotikan inte längre fungerar. Det är svårare för bakterier att ändra komplexa strukturer t.ex. cellhöljet som består av många olika komponenter. Antibiotika som angriper cellhöljet kan därför ha långsammare resistensutveckling och är mycket intressanta för vidare forskning.

Det finns flera tillvägagångssätt för att studera hur antibiotika dödar bakterier och deras specifika måltavlor. Med de senaste framstegen inom forskning kan effekterna av antibiotika studeras i levande bakterier med hjälp av mikroskopiska och spektroskopiska metoder. I denna avhandling testades flera olika metoder och några av dessa valdes ut för att skapa en ”verktygslåda” som kan användas av forskare från flera olika forskningsfält. Dessutom används dessa metoder här för att studera flera nya såväl som etablerade antibiotika.

Första viktig upptäckt var att existerande antibiotika inte alltid fungerar som det beskrivs i litteraturen. Detta är viktigt att förstå eftersom vi inte effektivt kan utveckla nya antibiotika om vi inte förstår deras fullständiga funktion. Vi också hittade flera olika typer av nya antibiotika kandidater med unika mål. Detta visar att det finns en hel del potentiella antibiotika.

Interaktion av antibiotika med bakterieceller

Chalmers, 2024-01-01 -- 2026-12-31.

Chalmers, 2019-09-02 -- 2023-08-31.

Ämneskategorier

Biologiska vetenskaper

Fundament

Grundläggande vetenskaper

Styrkeområden

Hälsa och teknik

ISBN

978-91-7905-978-1

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5444

Utgivare

Chalmers

10’an (floor 10), Chemistry Building, Kemigården 4, Chalmers Campus Johanneberg, Gothenburg.

Online

Opponent: Heike Brötz-Oesterhelt, University of Tübingen, Germany.

Mer information

Senast uppdaterat

2024-02-01