Phonon-Bottleneck Enhanced Exciton Emission in 2D Perovskites
Artikel i vetenskaplig tidskrift, 2024

Layered halide perovskites exhibit remarkable optoelectronic properties and technological promise, driven by strongly bound excitons. The interplay of spin-orbit and exchange coupling creates a rich excitonic landscape, determining their optical signatures and exciton dynamics. Despite the dark excitonic ground state, surprisingly efficient emission from higher-energy bright states has puzzled the scientific community, sparking debates on relaxation mechanisms. Combining low-temperature magneto-optical measurements with sophisticated many-particle theory, the origin of the bright exciton emission in perovskites is elucidated by tracking the thermalization of dark and bright excitons under a magnetic field. The unexpectedly high emission is clearly attributed to a pronounced phonon-bottleneck effect, considerably slowing down the relaxation toward the energetically lowest dark states. It is demonstrated that this bottleneck can be tuned by manipulating the bright-dark energy splitting and optical phonon energies, offering valuable insights and strategies for controlling exciton emission in layered perovskite materials that is crucial for optoelectronics applications.

exciton dynamics

phonons

layered perovskite

excitons

Författare

J. J.P. Thompson

Philipps-Universität Marburg

University of Cambridge

Mateusz Dyksik

Politechnika Wrocławska

Paulina Peksa

LCMI Laboratoire des Champs Magnetiques Intenses

Politechnika Wrocławska

Katarzyna Posmyk

Politechnika Wrocławska

LCMI Laboratoire des Champs Magnetiques Intenses

Ambjörn Joki

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Raul Perea Causin

Chalmers, Fysik, Kondenserad materie- och materialteori

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

M Baranowski

Politechnika Wrocławska

M. A. Loi

Rijksuniversiteit Groningen

Paulina Plochocka

LCMI Laboratoire des Champs Magnetiques Intenses

Politechnika Wrocławska

Ermin Malic

Philipps-Universität Marburg

Advanced Energy Materials

1614-6832 (ISSN) 1614-6840 (eISSN)

Vol. In Press

Ämneskategorier

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

DOI

10.1002/aenm.202304343

Mer information

Senast uppdaterat

2024-03-26