Tracially amenable actions and purely infinite crossed products
Artikel i vetenskaplig tidskrift, 2024

We introduce the notion of tracial amenability for actions of discrete groups on unital, tracial C∗-algebras, as a weakening of amenability where all the relevant approximations are done in the uniform trace norm. We characterize tracial amenability with various equivalent conditions, including topological amenability of the induced action on the trace space. Our main result concerns the structure of crossed products: for groups containing the free group F2, we show that outer, tracially amenable actions on simple, unital, Z-stable C∗-algebras always have purely infinite crossed products. Finally, we give concrete examples of tracially amenable actions of free groups on simple, unital AF-algebras.

Författare

Eusebio Gardella

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Shirly Geffen

Universität Münster

Julian Kranz

Universität Münster

Petr Naryshkin

Universität Münster

Andrea Vaccaro

Universität Münster

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 390 3 3665-3690

Ämneskategorier

Algebra och logik

DOI

10.1007/s00208-024-02833-9

Mer information

Senast uppdaterat

2024-10-12