Bifurcation of finger-like structures in traveling waves of epithelial tissues spreading
Artikel i vetenskaplig tidskrift, 2024

We consider a continuous active polar fluid model for the spreading of epithelial monolayers introduced by R. Alert, C. Blanch-Mercader, and J. Casademunt, 2019. The corresponding free boundary problem possesses flat front traveling wave solutions. Linear stability of these solutions under periodic perturbations is considered. It is shown that the solutions are stable for short-wave perturbations while exhibiting long-wave instability under certain conditions on the model parameters (if the traction force is sufficiently strong). Then, considering the prescribed period as the bifurcation parameter, we establish the emergence of nontrivial traveling wave solutions with a finger-like periodic structure (pattern). We also construct asymptotic expansions of the solutions in the vicinity of the bifurcation point and study their stability. We show that, depending on the value of the contractility coefficient, the bifurcation can be a subcritical or a supercritical pitchfork.

Pitchfork bifurcation

Free boundary problem

Traveling waves

Tissue spreading

Stability analysis

Författare

Leonid Berlyand

Huck Institutes of the Life Sciences

Antonina Rybalko

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Volodymyr Rybalko

Institute for Low Temperature Physics and Engineering

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Clarke Alex Safsten

University of Maryland

Journal of Mathematical Analysis and Applications

0022-247X (ISSN) 1096-0813 (eISSN)

Vol. 538 1 128338

Levande cellers matematik

Stiftelsen för Strategisk forskning (SSF) (UKR22-0004), 2022-04-08 -- 2024-10-08.

Ämneskategorier

Teknisk mekanik

Matematisk analys

DOI

10.1016/j.jmaa.2024.128338

Mer information

Senast uppdaterat

2024-04-09