Millimeter-Wave Power Amplifier Integrated Circuits for High Dynamic Range Signals
Artikel i vetenskaplig tidskrift, 2021

The next-generation 5G and beyond-5G wireless systems have stimulated a substantial growth in research, development, and deployment of mm-Wave electronic systems and antenna arrays at various scales. It is also envisioned that large dynamic range modulation signals with high spectral efficiency will be ubiquitously employed in future communication and sensing systems. As the interface between the antennas and transceiver electronics, power amplifiers (PAs) typically govern the output power, energy efficiency, and reliability of the entire wireless systems. However, the wide use of high dynamic range signals at mm-Wave carrier frequencies substantially complicates the design of PAs and demands an ultimate balance of energy efficiency and linearity as well as other PA performances. In this review paper, we will first introduce the system-level requirements and design challenges on mm-Waves PAs due to high dynamic range signals. We will review advanced active load modulation architectures for mm-Wave PAs and power devices. We will then introduce recent advances in mm-Wave PA technologies and innovations with several design examples. Special design considerations on mm-Wave PAs for phased array MIMOs and high mm-Wave frequencies will be outlined. We will also share our vision on future technology trends and innovation opportunities.

5G

integrated circuits

6G

dynamic range

energy efficiency

millimeter-wave

Författare

Hua Wang

Georgia Institute of Technology

Peter M. Asbeck

University of California at Los Angeles

Christian Fager

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

IEEE Journal of Microwaves

26928388 (eISSN)

Vol. 1 1 299-316

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Kommunikationssystem

Signalbehandling

Annan elektroteknik och elektronik

DOI

10.1109/JMW.2020.3035897

Mer information

Skapat

2024-04-24