PRIME IDEALS IN C*-ALGEBRAS AND APPLICATIONS TO LIE THEORY
Artikel i vetenskaplig tidskrift, 2024

. We show that every proper, dense ideal in a C & lowast;-algebra is contained in a prime ideal. It follows that a subset generates a C & lowast;-algebra as a not necessarily closed ideal if and only if it is not contained in any prime ideal. This allows us to transfer Lie theory results from prime rings to C & lowast;-algebras. For example, if a C & lowast;-algebra A is generated by its commutator subspace [A, A] as a ring, then [[A, A], [A, A]] = [A, A]. Further, given Lie ideals K and L in A, then [K, L] generates A as a not necessarily closed ideal if and only if [K, K] and [L, L] do, and moreover this implies that [K, L] = [A, A]. We also discover new properties of the subspace generated by square-zero elements and relate it to the commutator subspace of a C & lowast;-algebra.

Prime ideals

square-zero elements

commutators

C & lowast

Lie ideals

-algebras

Författare

Eusebio Gardella

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Hannes Thiel

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Proceedings of the American Mathematical Society

0002-9939 (ISSN) 1088-6826 (eISSN)

Vol. 152 9 3647-3656

Ämneskategorier

Matematisk analys

DOI

10.1090/proc/16808

Mer information

Senast uppdaterat

2024-08-17