Runaway electron dynamics in ITER disruptions with shattered pellet injections
Artikel i vetenskaplig tidskrift, 2024

This study systematically explores the parameter space of disruption mitigation through shattered pellet injection in ITER with a focus on runaway electron (RE) dynamics, using the disruption modeling tool Dream. The physics fidelity is considerably increased compared to previous studies, by e.g. using realistic magnetic geometry, resistive wall configuration, thermal quench onset criteria, as well as including additional effects, such as ion transport and enhanced RE transport during the thermal quench. The work aims to provide a fairly comprehensive coverage of experimentally feasible scenarios, considering plasmas representative of both non-activated and high-performance DT operation, different thermal quench onset criteria and transport levels, a wide range of hydrogen and neon quantities injected in one or two stages, and pellets with various characteristic shard sizes. Using a staggered injection scheme, with a pure hydrogen injection preceding a mixed hydrogen-neon injection, we find injection parameters leading to acceptable RE currents in all investigated discharges without activated runaway sources. Dividing the injection into two stages is found to significantly enhance the assimilation and minimize RE generation due to the hot-tail mechanism. However, while a staggered injection outperforms a single stage injection also in cases with radioactive RE sources, no cases with acceptable RE currents are found for a DT-plasma with a 15 MA plasma current.

ITER

disruption mitigation

shattered pellet injection

plasma simulation

runaway electron

Författare

Oskar Vallhagen

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Lise Hanebring

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

F. J. Artola

ITER Organization

M Lehnen

ITER Organization

E. Nardon

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Tünde-Maria Fülöp

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

M. Hoppe

Kungliga Tekniska Högskolan (KTH)

Sarah Newton

United Kingdom Atomic Energy Authority

Istvan Pusztai

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Nuclear Fusion

00295515 (ISSN) 17414326 (eISSN)

Vol. 64 8 086033

Extrema plasmautbrott

Knut och Alice Wallenbergs Stiftelse (2022.0087), 2023-07-01 -- 2028-06-30.

Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium

Europeiska kommissionen (EU) (101052200), 2021-01-01 -- 2025-12-31.

Skenande elektroner i fusionsplasmor

Vetenskapsrådet (VR) (2022-02862), 2023-01-01 -- 2026-12-31.

Ämneskategorier

Annan fysik

Fusion, plasma och rymdfysik

Den kondenserade materiens fysik

DOI

10.1088/1741-4326/ad54d7

Mer information

Senast uppdaterat

2024-07-29