Towards efficient quantum computing for quantum chemistry: reducing circuit complexity with transcorrelated and adaptive ansatz techniques
Artikel i vetenskaplig tidskrift, 2024

The near-term utility of quantum computers is hindered by hardware constraints in the form of noise. One path to achieving noise resilience in hybrid quantum algorithms is to decrease the required circuit depth - the number of applied gates - to solve a given problem. This work demonstrates how to reduce circuit depth by combining the transcorrelated (TC) approach with adaptive quantum ansätze and their implementations in the context of variational quantum imaginary time evolution (AVQITE). The combined TC-AVQITE method is used to calculate ground state energies across the potential energy surfaces of H4, LiH, and H2O. In particular, H4 is a notoriously difficult case where unitary coupled cluster theory, including singles and doubles excitations, fails to provide accurate results. Adding TC yields energies close to the complete basis set (CBS) limit while reducing the number of necessary operators - and thus circuit depth - in the adaptive ansätze. The reduced circuit depth furthermore makes our algorithm more noise-resilient and accelerates convergence. Our study demonstrates that combining the TC method with adaptive ansätze yields compact, noise-resilient, and easy-to-optimize quantum circuits that yield accurate quantum chemistry results close to the CBS limit.

Författare

Erika Magnusson

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Aaron Fitzpatrick

Algorithmiq Ltd

Stefan Knecht

Algorithmiq Ltd

Martin Rahm

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Werner Barucha-Dobrautz

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Faraday Discussions

1359-6640 (ISSN) 1364-5498 (eISSN)

Vol. 254 402-428

QC-SQUARED

Europeiska kommissionen (EU) (EC/HE/101062864), 2022-01-07 -- 2025-06-30.

Wallenberg Centre for Quantum Technology (WACQT)

Knut och Alice Wallenbergs Stiftelse (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

Ämneskategorier (SSIF 2011)

Teoretisk kemi

DOI

10.1039/d4fd00039k

PubMed

39083018

Mer information

Senast uppdaterat

2025-01-14