Graph-structured tensor optimization for nonlinear density control and mean field games
Artikel i vetenskaplig tidskrift, 2024

In this work we develop a numerical method for solving a type of convex graph-structured tensor optimization problems. This type of problems, which can be seen as a eneralization of multi-marginal optimal transport problems with graph-structured costs, appear in many applications. In particular, we show that it can be used to model and solve nonlinear density control problems, including convex dynamic network flow problems and multi-species potential mean field games. The method is based on coordinate ascent in a Lagrangian dual, and under mild assumptions we prove that the algorithm converges globally. Moreover, under a set of stricter assumptions, the algorithm converges R-linearly. To perform the coordinate ascent steps one has to compute projections of the tensor, and doing so by brute force is in general not computationally feasible. Nevertheless, for certain graph structures we derive efficient methods for computing these projections. In particular, these graph structures are the ones that occur in convex dynamic network flow problems and multi-species potential mean field games. We also illustrate the methodology on numerical examples from these problem classes.

optimal transport

potential mean field games

Sinkhorn algorithm

large-scale convex optimization

tensor optimization

unbalanced optimal transport

Författare

Axel Ringh

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Isabel Haasler

Kungliga Tekniska Högskolan (KTH)

Yongxin Chen

Georgia Institute of Technology

Johan Karlsson

Kungliga Tekniska Högskolan (KTH)

SIAM Journal on Control and Optimization

03630129 (ISSN)

Vol. 62 4 2176-2202

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Fundament

Grundläggande vetenskaper

DOI

10.1137/23M1571587

Mer information

Senast uppdaterat

2024-08-21