XAI-Guided Optimization of a Multilayer Network Regression Model
Paper i proceeding, 2024

The recent technological advances create increased network capacity demand, highlighting the need for new network optimization methods. However, the proposed solutions require broad testing with numerous time-consuming simulations. Thus, estimation methods based on Machine Learning (ML) are developed to improve this process. In this work, we create a regression network model to predict four resource utilization metrics using the input set of connection requests. Using eXplainable Artificial Intelligence (XAI) tools, we optimize the proposed model for faster inference without a decrease in prediction quality.

multilayer network

explainable artificial intelligence

resource allocation

machine learning

Författare

Katarzyna Duszynska

Politechnika Wrocławska

Pawel Polski

Politechnika Wrocławska

Micha Wlosek

Politechnika Wrocławska

Aleksandra Knapinska

Politechnika Wrocławska

Piotr Lechowicz

Politechnika Wrocławska

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Krzysztof Walkowiak

Politechnika Wrocławska

2024 IFIP Networking Conference, IFIP Networking 2024

769-774
9783903176638 (ISBN)

23rd International Federation for Information Processing on Networking Conference, IFIP Networking 2024
Thessaloniki, Greece,

Ämneskategorier

Produktionsteknik, arbetsvetenskap och ergonomi

Reglerteknik

DOI

10.23919/IFIPNetworking62109.2024.10619785

Mer information

Senast uppdaterat

2024-09-09