Percolation for two-dimensional excursion clouds and the discrete Gaussian free field
Artikel i vetenskaplig tidskrift, 2024

We study percolative properties of excursion processes and the discrete Gaussian free field (dGFF) in the planar unit disk. We consider discrete excursion clouds, defined using random walks as a two-dimensional version of random interlacements, as well as its scaling limit, defined using Brownian motion. We prove that the critical parameters associated to vacant set percolation for the two models are the same and equal to π/3. The value is obtained from a Schramm-Loewner evolution (SLE) computation. Via an isomorphism theorem, we use a generalization of the discrete result that also involves a loop soup (and an SLE computation) to show that the critical parameter associated to level set percolation for the dGFF is strictly positive and smaller than√π/2. In particular this entails a strict inequality of the type h∗<√2u∗ between the critical percolation parameters of the dGFF and the two-dimensional excursion cloud. Similar strict inequalities are conjectured to hold in a general transient setup.

Gaussian free field

percolation

Brownian excursion

random interlacements

Författare

A. Drewitz

Universität zu Köln

Olof Elias

Universität zu Köln

A. Prévost

Université de Genève

Johan Tykesson

Göteborgs universitet

Chalmers, Matematiska vetenskaper

F. Viklund

Kungliga Tekniska Högskolan (KTH)

Electronic Journal of Probability

10836489 (eISSN)

Vol. 29 118

Ämneskategorier

Annan matematik

Sannolikhetsteori och statistik

Datavetenskap (datalogi)

DOI

10.1214/24-EJP1168

Mer information

Senast uppdaterat

2024-09-26