Low-Temperature (Cryogenic) Transport in Gate-All-Around (GAA) Silicon Nanowire Field-Effect Transistor
Paper i proceeding, 2024

This work explores the temperature dependency of the performance of an ultra-thin silicon nanowire (SiNW) gate-all-around field-effect transistor (GAA-FET). The nanowire is assumed coaxially aligned with an ideal cylindrical gate-all-around device. The nanowire is [110] axially aligned with a diameter of 1.3 nm. Electron transport is modeled using Ensemble Monte Carlo (EMC) simulations coupled self-consistently with an electrostatic solver that solves Gauss Law in integral form. Electron scattering mechanisms include bulk silicon longitudinal acoustic and optical phonons. A wide range of temperatures is considered - from 4 K to 150 K to understand the effects of temperature on device performance under both steady-state and device switching conditions. The device is seen to work appropriately for the temperature range considered. The differences in device currents for different temperatures is attributed to the differences in the electron scattering rates for the various temperatures.

Ensemble Monte Carlo, Density Functional Theory (DFT), silicon nanowire, cryogenic, phonon scattering

Författare

Amit Verma

Texas A&M University - Kingsville

Reza Nekovei

Daryoush Shiri

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Proceedings of the IEEE Conference on Nanotechnology

19449399 (ISSN) 19449380 (eISSN)

122-125
979-8-3503-8624-0 (ISBN)

24th IEEE International Conference on Nanotechnology, NANO 2024
Gijon, Spain,

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Nanotekniklaboratoriet

Ämneskategorier (SSIF 2011)

Teoretisk kemi

Nanoteknik

Den kondenserade materiens fysik

DOI

10.1109/NANO61778.2024.10628961

Mer information

Senast uppdaterat

2024-09-18