Quantum oscillation signatures of the Bloch-Grüneisen temperature in the Dirac semimetal ZrTe5
Artikel i vetenskaplig tidskrift, 2024

The electron-phonon interaction is in many ways a solid state equivalent of quantum electrodynamics. Being always present, the e-p coupling is responsible for the intrinsic resistance of metals at finite temperatures, making it one of the most fundamental interactions present in solids. In typical metals, different regimes of e-p scattering are separated by a characteristic phonon energy scale - the Debye temperature. However, in metals harboring very small Fermi surfaces a new scale emerges - the Bloch-Grüneisen temperature. This is a temperature at which the average phonon momentum becomes comparable to the Fermi momentum of the electrons. Here we report sub-Kelvin transport and sound propagation experiments on the Dirac semimetal ZrTe5. The combination of the simple band structure with only a single small Fermi surface sheet allowed us to directly observe the Bloch-Grüneisen temperature and its consequences on electronic transport of a 3D metal in the limit where the small size of the Fermi surface leads to effective restoration of translational invariance of free space. Our results indicate that on entering this hydrodynamic transport regime, the viscosity of the Dirac electronic liquid undergoes an anomalous increase beyond the theoretically predicted T5 temperature dependence. Extension of our measurements to strong magnetic fields reveal that, despite the dimensional reduction of the electronic band structure, the electronic liquid retains characteristics of the zero-field hydrodynamic regime up to the quantum limit. This is vividly reflected by an anomalous suppression of the amplitude of quantum oscillations seen in the Shubnikov-de Haas effect.

Författare

S. Galeski

Helmholtz

Universität Bonn

K. Araki

National Defense Academy of Japan

Ola Kenji Forslund

Universität Zürich

Uppsala universitet

R. Wawrzyńczak

Max-Planck-Gesellschaft

H. F. Legg

Universität Basel

P. K. Sivakumar

Max-Planck-Gesellschaft

Ugne Miniotaite

Kungliga Tekniska Högskolan (KTH)

Frank Elson

Kungliga Tekniska Högskolan (KTH)

Martin Månsson

Kungliga Tekniska Högskolan (KTH)

C. Witteveen

Université de Genève

F. O. von Rohr

Université de Genève

A. Q.R. Baron

Japan Synchrotron Radiation Research Institute (JASRI)

D. Ishikawa

Japan Synchrotron Radiation Research Institute (JASRI)

Q. Li

Brookhaven National Laboratory

G. Gu

Brookhaven National Laboratory

L. X. Zhao

Chinese Academy of Sciences

Songshan Lake Materials Laboratory

W. L. Zhu

Chinese Academy of Sciences

Shaanxi Normal University

G. F. Chen

Songshan Lake Materials Laboratory

Chinese Academy of Sciences

Y. Wang

Chinese Academy of Sciences

S. S.P. Parkin

Max-Planck-Gesellschaft

D. Grobunov

Helmholtz

S. Zherlitsyn

Helmholtz

B. Vlaar

Technische Universität Wien

D. H. Nguyen

Technische Universität Wien

S. Paschen

Technische Universität Wien

Prineha Narang

University of California

C. Felser

Universität Basel

J. Wosnitza

Technische Universität Dresden

Tobias Meng

Technische Universität Dresden

Yasmine Sassa

Chalmers, Fysik, Materialfysik

Sean A. Hartnoll

Faculty of Mathematics

J. Gooth

Max-Planck-Gesellschaft

Universität Bonn

Physical Review B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 110 12 L121103

European Microkelvin Platform (EMP)

Europeiska kommissionen (EU) (EC/H2020/824109), 2019-01-01 -- 2022-12-31.

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1103/PhysRevB.110.L121103

Mer information

Senast uppdaterat

2024-09-23