Simulation of shear-type cracking and failure with non-linear finite element method
Artikel i vetenskaplig tidskrift, 2007

Today, the non-linear finite element method is commonly used by practising engineers. Simulating the shear behaviour and shear failure of reinforced concrete structures, using three-dimensional non-linear finite element methods, has shown higher load-carrying capacity due to favourable load distribution, compared to conventional analyses. However, the modelling method for reinforced and prestressed concrete members subjected to shear and torsion has not been generally verified. Therefore, the method needs to be further investigated and confirmed to be practically reliable. The aim of this project is to develop, improve and verify a method to simulate the shear response of reinforced and prestressed concrete members. The method should be possible to use for large structures, for example box-girder bridges, subjected to various load actions. Experiments with panels loaded in shear and beams loaded in bending, shear and torsion are simulated by using non-linear FE analysis. The results showed that four-node curved shell elements with embedded reinforcement could simulate the shear response. It is well known that the shear sliding capacity is larger than what can be explained by the reinforcement contribution determined from a truss model. This increase is due to dowel action and aggregate interlock, and has been accounted for in the past by modifying the concrete tension response in models, e.g. according to the modified compression field theory. Results from the analyses show that without any modification, the capacity was underestimated and the average strains, i.e. the crack widths, were overestimated. On the other hand, if the concrete contribution to the shear capacity was considered with the expression from MCFT, the capacity was in many cases overestimated and the average strains underestimated.

prestressed concrete

shear failure

shear response

shear and torsion

reinforced concrete

shear capacity

non-linear finite element analysis


Helén Broo

Chalmers, Bygg- och miljöteknik, Konstruktionsteknik

Mario Plos

Chalmers, Bygg- och miljöteknik, Konstruktionsteknik

Karin Lundgren

Chalmers, Bygg- och miljöteknik, Konstruktionsteknik

Björn Engström

Chalmers, Bygg- och miljöteknik, Konstruktionsteknik

Magazine of Concrete Research

0024-9831 (ISSN)

Vol. 59 9 673-687





Mer information