Nanomechanical Crystalline AlN Resonators with High Quality Factors for Quantum Optoelectromechanics
Artikel i vetenskaplig tidskrift, 2024

High-quality factor (Qm) mechanical resonators are crucial for applications where low noise and long coherence time are required, as mirror suspensions, quantum cavity optomechanical devices, or nanomechanical sensors. Tensile strain in the material enables the use of dissipation dilution and strain engineering techniques, which increase the mechanical quality factor. These techniques have been employed for high-Qm mechanical resonators made from amorphous materials and, recently, from crystalline materials such as InGaP, SiC, and Si. A strained crystalline film exhibiting substantial piezoelectricity expands the capability of high-Qm nanomechanical resonators to directly utilize electronic degrees of freedom. In this work, nanomechanical resonators with Qm up to 2.9 × 107 made from tensile-strained 290 nm-thick AlN are realized. AlN is an epitaxially-grown crystalline material offering strong piezoelectricity. Nanomechanical resonators that exploit dissipation dilution and strain engineering to reach a Qm × fm-product approaching 1013 Hz at room temperature are demonstrated. A novel resonator geometry is realized, triangline, whose shape follows the Al–N bonds and offers a central pad patterned with a photonic crystal. This allows to reach an optical reflectivity above 80% for efficient coupling to out-of-plane light. The presented results pave the way for quantum optoelectromechanical devices at room temperature based on tensile-strained AlN.

piezoelectricity

hierarchical clamping

dissipation dilution

photonic crystal

phononic crystal

strain

aluminium nitride

Författare

Anastasiia Ciers

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Alexander Wolfgang Martin Jung

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Joachim Ciers

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Laurentius Radit Nindito

Student vid Chalmers

Hannes Pfeifer

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Armin Dadgar

Otto von Guericke Universitaet Magdeburg

André Strittmatter

Otto von Guericke Universitaet Magdeburg

Witlef Wieczorek

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Advanced Materials

09359648 (ISSN) 15214095 (eISSN)

Vol. 36 44 2403155

Ickelinjär koppling mellan ljus och mekaniska vibrationer för experiment inom kvantoptik och kvantsensorer

Vetenskapsrådet (VR) (2019-04946), 2020-01-01 -- 2023-12-31.

Wallenberg Centre for Quantum Technology (WACQT)

Knut och Alice Wallenbergs Stiftelse (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

Ämneskategorier (SSIF 2011)

Annan materialteknik

Den kondenserade materiens fysik

DOI

10.1002/adma.202403155

Mer information

Senast uppdaterat

2025-01-14