Atomic insights into the competitive edge of nanosheets splitting water
Artikel i vetenskaplig tidskrift, 2024

The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO2. Iridium oxo-hydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with atomic structure. While amorphous IOHs perform best, they
are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain performance. However, it is not fully understood how activity and stability are related on the atomic level, hampering rational design. Herein, we provide simple design-rules (Figure 12) derived from literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead
material because they provide excellent catalyst utilization and a predictable structure. We found that nanosheets combine the chemical stability of crystalline IOHs with the activity amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (μ3∆–O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates
from coordinative unsaturated edge sites with radical character, i.e. μ1–O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.

XPS

design rules

Iridium oxide

electrochemistry

in situ

electronic structure

nanosheets

oxygen evolution reaction (OER)

stability

NEXAFS

polymer electrolyte membrane (PEM)

operando

Författare

Lorenz J. Falling

Fritz Haber-institutet för Max Planck-sällskapet

Institutionen för naturvetenskap, Tekniska universitetet i München

Woosun Jang

Fritz Haber Institute of the Max Planck Society

Yonsei University

Sourav Laha

National Institute of Technology, Durgapur

Max-Planck Institute für Festkörperforschung

Thomas Götsch

Fritz Haber Institute of the Max Planck Society

Maxwell Terban

Max-Planck Institute für Festkörperforschung

Rik Mom

Fritz Haber Institute of the Max Planck Society

Universiteit Leiden

Juan-Jesús Velasco-Vélez

Fritz Haber Institute of the Max Planck Society

El Sincrotrón ALBA

Frank Girgsdies

Fritz Haber Institute of the Max Planck Society

Detre Teschner

Fritz Haber Institute of the Max Planck Society

Andrey Tarasov

Fritz Haber Institute of the Max Planck Society

Cheng-Hao Chuang

Tamkang Universitet

Thomas Lunkenbein

Fritz Haber Institute of the Max Planck Society

Axel Knop-Gericke

Fritz Haber Institute of the Max Planck Society

Daniel Weber

Max-Planck Institute für Festkörperforschung

Chalmers, Kemi och kemiteknik, Energi och material

Robert Dinnebier

Max-Planck Institute für Festkörperforschung

Bettina V. Lotsch

Max-Planck Institute für Festkörperforschung

Robert Schlögl

Fritz Haber Institute of the Max Planck Society

Travis E. Jones

Fritz Haber Institute of the Max Planck Society

Los Alamos National Laboratory

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 146 40 27886-27902

Ämneskategorier

Materialkemi

DOI

10.1021/jacs.4c10312

PubMed

39319770

Mer information

Senast uppdaterat

2024-10-28