Homogenization of nonlocal spectral problems
Artikel i vetenskaplig tidskrift, 2024

We consider a spectral problem for convolution-type operators in environments with locally periodic microstructure and study the asymptotic behavior of the bottom of the spectrum. We show that the bottom point of the spectrum converges as the microstructure period tends to zero, and identify the limit in terms of an additive eigenvalue problem for effective Hamilton-Jacobi equation. In the periodic case, we establish a more accurate two-term asymptotic formula.

Nonlocal operators

Homogenization

Spectral problems

Författare

Andrey Piatnitski

Universitetet i Tromsø – Norges arktiske universitet

Volodymyr Rybalko

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Zeitschrift für Angewandte Mathematik und Physik

0044-2275 (ISSN) 1420-9039 (eISSN)

Vol. 75 6 226

Ämneskategorier

Matematisk analys

DOI

10.1007/s00033-024-02365-x

Mer information

Senast uppdaterat

2024-11-27