Tuning the Organic Electrochemical Transistor (OECT) Threshold Voltage with Monomer Blends
Artikel i vetenskaplig tidskrift, 2024

A novel approach is introduced to modulate the threshold voltage of organic electrochemical transistors (OECTs) that are fabricated by electropolymerizing the channel material between the source and drain electrodes. To achieve this, we adjust the ratio of two water-soluble tri-thiophene monomers, which share the same backbone, but present either anionic or zwitterionic sidechains, during channel formation. This approach allows for a continuous modulation of both the electropolymerization onset potential and the native doping state of the film. We attribute the effect of monomer blends displaying properties that are a weighted average of their components to the formation of nanoscale monomer aggregates that have a uniform internal charge density. Through an investigation of monomer aggregation behavior, polymer film growth, and device properties of OECTs fabricated by electropolymerization, we highlight the importance of monomer aggregation in the electropolymerization of conducting polymers. The ability to tune both electropolymerization onset and the OECT threshold voltage has significant implications for the development of more complex circuits for integrated neuromorphic computing, biosensing, and bioelectronic systems.

organic electrochemical transistor (OECT)

aggregation

electropolymerization

conducting polymer

threshold voltage

Författare

Diana Priyadarshini

Linköpings universitet

Changbai Li

Linköpings universitet

Rebecka Rilemark

Chalmers, Fysik, Nano- och biofysik

Tobias Abrahamsson

Linköpings universitet

Mary J. Donahue

Linköpings universitet

Xenofon Strakosas

Linköpings universitet

Fredrik Ek

Lunds universitet

Roger Olsson

Göteborgs universitet

Chiara Musumeci

Linköpings universitet

Simone Fabiano

Linköpings universitet

Magnus Berggren

Linköpings universitet

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Daniel T. Simon

Linköpings universitet

Jennifer Y. Gerasimov

Linköpings universitet

Advanced Electronic Materials

2199-160X (ISSN) 2199160x (eISSN)

Vol. In Press

Elektroniska neuromediciner

Vetenskapsrådet (VR) (2018-06197), 2018-12-01 -- 2024-11-30.

Ämneskategorier

Polymerkemi

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1002/aelm.202400681

Mer information

Senast uppdaterat

2024-12-05