The landscape of L-functions: degree 3 and conductor 1
Paper i proceeding, 2024

We extend previous lists by numerically computing approximations to many L-functions of degree d = 3, conductor N = 1, and small
spectral parameters. We sketch how previous arguments extend to say that
for very small spectral parameters there are no such L-functions. Using the
case (d, N) = (3, 1) as a guide, we explain how the set of all L-functions
with any fixed invariants (d, N) can be viewed as a landscape of points in a
(d − 1)-dimensional Euclidean space. We use Plancherel measure to identify
the expected density of points for large spectral parameters for general (d, N).
The points from our data are close to the origin and we find that they have
smaller density.

Plancherel measure

spectral parameters

functional equation

Maass form

L-function

Författare

Stefan Lemurell

Chalmers, Matematiska vetenskaper, Algebra och geometri

David W. Farmer

American Institute of Mathematics

Sally Koutsoliotas

Bucknell University

David P Roberts

University of Minnesota

Contemporary Mathematics

0271-4132 (ISSN) 1098-3627 (eISSN)

Vol. 796 313-338
978-1-4704-7260-3 (ISBN)

LuCaNT: LMFDB, Computation, and Number Theory
Providence, RI, ,

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Annan matematik

Fundament

Grundläggande vetenskaper

Mer information

Senast uppdaterat

2024-12-17