Numerical investigation of ducted fuel injection using Multiple Representative Interactive Linear Eddy Model
Artikel i vetenskaplig tidskrift, 2025
Fuel-air mixing in non-premixed and partially premixed combustion has a major influence on soot emissions. Improving the mixing quality of the premixed region in non-premixed combustion upstream of the auto-ignition zone aids substantially in reducing soot emissions. The Ducted Fuel Injection (DFI) concept is based on injecting fuel inside a metal cylinder inside the combustion chamber at a certain distance from the injection nozzle exit hole. Although the concept is straightforward, recent studies have shown that implementing DFI in compression ignition combustion chambers dramatically affects soot mitigation. DFI improves air entrainment by a suction effect when fuel travels inside the duct, which increases the turbulence level at the inlet and enhances the fuel-air mixing quality. Additionally, DFI delays ignition by preventing the formation of stoichiometric regions at the spray cone's outer region. This work utilizes a recently presented combustion model titled the Multiple Representative Interactive Linear Eddy Model (MRILEM) to simulate DFI in a high-pressure, high-temperature constant volume chamber. Several simulations are realized for two different ambient temperatures using an n-dodecane mechanism, where several parameters, such as ignition delay, lift-off length, and flame structure, are assessed. Simulation results are compared to experimental data from the literature and simulation results obtained with the Multi-Zone Well Mixed (MZWM) model simulation results. Results show that by enforcing the duct on the LEM line and modifying the turbulence implementation strategy, MRILEM shows overall realistic predictions for DFI cases and reasonable quantitative results for lift-off length and ignition delay compared to the MZWM model.
soot mitigation
Ducted fuel injection
mixing combustion
constant volume combustion chamber
Linear Eddy Model