Learning Structure-Aware Representations of Dependent Types
Paper i proceeding, 2024

Agda is a dependently-typed programming language and a proof assistant, pivotal in proof formalization and programming language theory.This paper extends the Agda ecosystem into machine learning territory, and, vice versa, makes Agda-related resources available to machine learning practitioners.We introduce and release a novel dataset of Agda program-proofs that is elaborate and extensive enough to support various machine learning applications -- the first of its kind.Leveraging the dataset's ultra-high resolution, which details proof states at the sub-type level, we propose a novel neural architecture targeted at faithfully representing dependently-typed programs on the basis of structural rather than nominal principles.We instantiate and evaluate our architecture in a premise selection setup, where it achieves promising initial results, surpassing strong baselines.

Författare

Konstantinos Kogkalidis

Aalto-Yliopisto

Universita di Bologna

Orestis Melkonian

Input/Output Global (IOG)

Jean-Philippe Bernardy

Göteborgs universitet

Chalmers, Data- och informationsteknik, Computing Science

Advances in Neural Information Processing Systems

10495258 (ISSN)

Vol. 37

Advances in Neural Information Processing Systems
Vancouver, Canada,

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Datavetenskap (datalogi)

Data- och informationsvetenskap (Datateknik)

Mer information

Senast uppdaterat

2025-03-19