Quadrupolar excitons in MoSe2 bilayers
Artikel i vetenskaplig tidskrift, 2025

The quest for platforms to generate and control exotic excitonic states has greatly benefited from the advent of transition metal dichalcogenide (TMD) monolayers and their heterostructures. Among the unconventional excitonic states, quadrupolar excitons-a superposition of two dipolar excitons with anti-aligned dipole moments-are of great interest for applications in quantum simulations and for the investigation of many-body physics. Here, we unambiguously demonstrate the emergence of quadrupolar excitons in natural MoSe2 homobilayers, whose energy shifts quadratically in electric field. In contrast to trilayer systems, MoSe2 homobilayers have many advantages, which include a larger coupling between dipolar excitons. Our experimental observations are complemented by many-particle theory calculations offering microscopic insights in the formation of quadrupolar excitons. Our results suggest TMD homobilayers as ideal platform for the engineering of excitonic states and their interaction with light and thus candidate for carrying out on-chip quantum simulations.

Författare

Jakub Jasinski

Université de Toulouse

Politechnika Wrocławska

Université Grenoble Alpes

Joakim Hagel

Chalmers, Fysik, Kondenserad materie- och materialteori

Samuel Brem

Philipps-Universität Marburg

Edith Wietek

Technische Universität Dresden

Takashi Taniguchi

National Institute for Materials Science (NIMS)

Kenji Watanabe

National Institute for Materials Science (NIMS)

Alexey Chernikov

Technische Universität Dresden

Nicolas Bruyant

Université Grenoble Alpes

Université de Toulouse

Mateusz Dyksik

Politechnika Wrocławska

Alessandro Surrente

Politechnika Wrocławska

Michal Baranowski

Politechnika Wrocławska

Duncan K. Maude

Université de Toulouse

Université Grenoble Alpes

Ermin Malic

Philipps-Universität Marburg

Paulina Plochocka

Politechnika Wrocławska

Université de Toulouse

Université Grenoble Alpes

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 16 1 1382

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

Annan fysik

DOI

10.1038/s41467-025-56586-3

PubMed

39910056

Mer information

Senast uppdaterat

2025-02-27