Motional Sideband Asymmetry of a Solid-State Mechanical Resonator at Room Temperature
Artikel i vetenskaplig tidskrift, 2025

The motional sideband asymmetry of a mechanical oscillator interacting with a laser field can be observed when approaching the quantum ground state, where the zero-point energy of the mechanical oscillator becomes a sizable contribution to its motion. In the context of quantum optomechanics, it allows, in principle, calibration-free inference of the thermal equilibrium of a macroscopic mechanical resonator with its optical bath. At room temperature, this phenomenon has been observed in pioneering experiments using levitated nanoparticles. Measuring this effect with solid-state mechanical resonators has been compounded by thermal intermodulation noise, mirror frequency noise and low quantum cooperativity. Here, we sideband-cool a membrane-in-the-middle system close to the quantum ground state from room temperature and observe motional sideband asymmetry in a dual-homodyne measurement. Sideband thermometry yields a minimum phonon occupancy of n¯eff=9.5. Our work provides insights into nonlinear optomechanical dynamics at room temperature and facilitates accessible optomechanical quantum technologies without the need for complex feedback control and cryogenic cooling.

Författare

Yi Xia

Ecole Polytechnique Federale de Lausanne (EPFL)

Guanhao Huang

Ecole Polytechnique Federale de Lausanne (EPFL)

Harvard School of Engineering and Applied Sciences

Alberto Beccari

Ecole Polytechnique Federale de Lausanne (EPFL)

Alessio Zicoschi

Ecole Polytechnique Federale de Lausanne (EPFL)

Amirali Arabmoheghi

Ecole Polytechnique Federale de Lausanne (EPFL)

Nils Johan Engelsen

Ecole Polytechnique Federale de Lausanne (EPFL)

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Tobias J. Kippenberg

Ecole Polytechnique Federale de Lausanne (EPFL)

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 134 7 073602

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

Annan fysik

DOI

10.1103/PhysRevLett.134.073602

Mer information

Senast uppdaterat

2025-03-11