Computational biology predicts metabolic engineering targets for increased production of 103 valuable chemicals in yeast
Artikel i vetenskaplig tidskrift, 2025

Development of efficient cell factories that can compete with traditional chemical production processes is complex and generally driven by case-specific strategies, based on the product and microbial host of interest. Despite major advancements in the field of metabolic modeling in recent years, prediction of genetic modifications for increased production remains challenging. Here, we present a computational pipeline that leverages the concept of protein limitations in metabolism for prediction of optimal combinations of gene engineering targets for enhanced chemical bioproduction. We used our pipeline for prediction of engineering targets for 103 different chemicals using Saccharomyces cerevisiae as a host. Furthermore, we identified sets of gene targets predicted for groups of multiple chemicals, suggesting the possibility of rational model-driven design of platform strains for diversified chemical production.

metabolic engineering

synthetic biology

genome scale modeling

yeast

Författare

Iván Domenzain Del Castillo Cerecer

Chalmers, Life sciences, Systembiologi

Yao Lu

Northwest A&F university

Haoyu Wang

Chinese Academy of Sciences

Shanghai Jiao Tong University

University of Chinese Academy of Sciences

Junling Shi

Northwestern Polytechnical University

Hongzhong Lu

Shanghai Jiao Tong University

Jens B Nielsen

Chalmers, Life sciences, Systembiologi

Proceedings of the National Academy of Sciences of the United States of America

0027-8424 (ISSN) 1091-6490 (eISSN)

Vol. 122 9 e2417322122

Grafenbaserad CRISPR-Cas9 genmodifiering av växtceller

Novo Nordisk Fonden (NNF10CC1016517), 2021-08-01 -- 2024-06-30.

Model-Based Construction And Optimisation Of Versatile Chassis Yeast Strains For Production Of Valuable Lipid And Aromatic Compounds (CHASSY)

Europeiska kommissionen (EU) (EC/H2020/720824), 2016-12-01 -- 2020-11-30.

Bioinformatics Services for Data-Driven Design of Cell Factories and Communities (DD-DeCaF)

Europeiska kommissionen (EU) (EC/H2020/686070), 2016-03-01 -- 2020-02-28.

Ämneskategorier (SSIF 2025)

Molekylärbiologi

Bioinformatik (beräkningsbiologi)

Bioinformatik och beräkningsbiologi

DOI

10.1073/pnas.2417322122

PubMed

39999169

Relaterade dataset

SysBioChalmers/CellFactory-ecYeastGEM [dataset]

URI: https://github.com/SysBioChalmers/CellFactory-ecYeastGEM

Mer information

Senast uppdaterat

2025-03-24