Towards Better QoT Estimation: An ML Architecture with Link-Level Embedding Layers
Artikel i vetenskaplig tidskrift, 2025

Machine learning (ML) is emerging as a promising tool for estimating the Quality of Transmission (QoT) in optical networks, especially for unestablished lightpaths where traditional methods are limited. However, inaccuracies in ML-based QoT predictions—typically expressed in terms of generalized signal-to-noise ratio (GSNR)—can significantly affect network operation. Overestimation may lead to retransmissions due to overly aggressive modulation format choices, while underestimation results in underutilized spectral resources. To address this, we propose a novel ML architecture that incorporates an embedding layer for link-level features alongside path-and service-level inputs. Using data generated from an accurate analytical model, we show that our approach reduces prediction error by up to 34% compared to standard architectures. Simulated deployment scenarios further demonstrate operational benefits, with a 15.9% decrease in incorrect and a 34.8% reduction in overly conservative modulation format selections.

artificial neural networks

network embedding layer

Quality of transmission

machine learning

generalized signal-to-noise ratio

Författare

Piotr Lechowicz

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Farhad Arpanaei

Universidad Carlos III de Madrid

Stefan Melin

Telia Company

Renzo Diaz

Telia Company

Anders Lindgren

Telia Company

D. Larrabeiti

Universidad Carlos III de Madrid

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE Networking Letters

25763156 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datorsystem

DOI

10.1109/LNET.2025.3561336

Mer information

Senast uppdaterat

2025-04-29