Explaining Aggregated Network Traffic Predictors
Paper i proceeding, 2025

Network traffic prediction is essential for the intelligent management of modern backbone networks. In application-aware settings, it becomes crucial to generate detailed forecasts for each traffic class to ensure they are handled with appropriate care. To address scalability and survivability challenges, models built using data aggregation techniques offer an effective solution. In this paper, we examine how such models operate to make successful forecasts for diverse traffic classes in real and semi-synthetic data, incorporating Explainable Artificial Intelligence (XAI) tools. The analysis reveals interesting trends in how various regressors capture cross-class intricacies and correlations, highlighting the potential of aggregated models.

traffic prediction

data aggregation

explainable AI

machine learning

Författare

Aleksandra Knapinska

Politechnika Wrocławska

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Krzysztof Walkowiak

Politechnika Wrocławska

2025 IFIP Networking Conference (IFIP Networking)

1861-2288 (ISSN)

2025 IFIP Networking Conference (IFIP Networking)
Limassol, Cyprus,

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Telekommunikation

Datorsystem

Mer information

Skapat

2025-05-19