Atomic insights into the competitive edge of nanosheets splitting water
Artikel i vetenskaplig tidskrift, 2024

The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO2. Iridium oxo-hydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with atomic structure. While amorphous IOHs perform best, they
are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain performance. However, it is not fully understood how activity and stability are related on the atomic level, hampering rational design. Herein, we provide simple design-rules (Figure 12) derived from literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead
material because they provide excellent catalyst utilization and a predictable structure. We found that nanosheets combine the chemical stability of crystalline IOHs with the activity amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (μ3∆–O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates
from coordinative unsaturated edge sites with radical character, i.e. μ1–O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.

electronic structure

operando

design rules

nanosheets

stability

oxygen evolution reaction (OER)

electrochemistry

NEXAFS

Iridium oxide

XPS

in situ

polymer electrolyte membrane (PEM)

Författare

Lorenz J. Falling

Institutionen för naturvetenskap, Tekniska universitetet i München

Max-Planck-Gesellschaft

Woosun Jang

Max-Planck-Gesellschaft

Yonsei University

Sourav Laha

Max-Planck-Gesellschaft

National Institute of Technology, Durgapur

Thomas Götsch

Max-Planck-Gesellschaft

Maxwell Terban

Max-Planck-Gesellschaft

Rik Mom

Universiteit Leiden

Max-Planck-Gesellschaft

Juan-Jesús Velasco-Vélez

El Sincrotrón ALBA

Max-Planck-Gesellschaft

Frank Girgsdies

Max-Planck-Gesellschaft

Detre Teschner

Max-Planck-Gesellschaft

Andrey Tarasov

Max-Planck-Gesellschaft

Cheng-Hao Chuang

Tamkang Universitet

Thomas Lunkenbein

Max-Planck-Gesellschaft

Axel Knop-Gericke

Max-Planck-Gesellschaft

Daniel Weber

Max-Planck-Gesellschaft

Chalmers, Kemi och kemiteknik, Energi och material

Robert Dinnebier

Max-Planck-Gesellschaft

Bettina V. Lotsch

Max-Planck-Gesellschaft

Robert Schlögl

Max-Planck-Gesellschaft

Travis E. Jones

Los Alamos National Laboratory

Max-Planck-Gesellschaft

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 146 40 27886-27902

Ämneskategorier (SSIF 2011)

Materialkemi

DOI

10.1021/jacs.4c10312

PubMed

39319770

Mer information

Senast uppdaterat

2025-05-21