Integrating hydrogels and machine learning to understand digestion
Licentiatavhandling, 2025
I focused on the gastric digestion of gelatin gels crosslinked with transglutaminase (TGase), showing their stability under gastric conditions and demonstrated that convolutional neural networks (CNNs) combined with multilayer perceptrons (MLPs) have the potential to predict the degree of hydrolysis (DH) and classify digestive environments from visual features alone. To elaborate further, I examined how chemical modifications, e.g., methylation and hydrolysis, influenced the structure and rheological properties of pectin and PGA. These changes affected gel network parameters such as mesh size, turbidity, and viscosity, which are potentially linked to digestion behavior. The fermentability of modified pectin using in vitro human colonic fermentation showed that pectin of low molar mass and pectin fed as gel produced higher total short-chain fatty acids (SCFAs) than higher molar mass or dispersed forms, highlighting the importance of matrix structure in modulating microbial activity. These findings enhance our understanding of the digestion of food materials, and show potential for the use of neural networks in probing digestion from images.
mesh size
gel
in vitro digestion
Pectin
polygalacturonic acid
gelatin
in vitro fermentation
Författare
Giovanni Tizzanini
Chalmers, Kemi och kemiteknik, Tillämpad kemi
Tizzanini G., Ytterberg J., Längkvist M., Lopez-Sanchez P., Ström A. Predicting in vitro digestion of gelatin gels using machine and representation learning for image processing
Börjesson M., Tizzanini G., Ström A., Lerbret A., Cousin F., Assifaoui A. Impact of Methyl-esterification on the Microstructure of Calcium-Induced Polygalacturonic Acid Gels
Stärkt forskning och innovation i livsmedelssektorn möjliggjord med neutron- och synkrotrontekniker
VINNOVA (2021-04909), 2021-12-01 -- 2024-07-31.
Ämneskategorier (SSIF 2025)
Livsmedelsvetenskap
Licentiatuppsatser vid Institutionen för kemi och kemiteknik, Chalmers tekniska högskola: Nr. 2025:07
Utgivare
Chalmers
KC-salen, Kemigården 4, Chalmers (room 4178).
Opponent: Dr. Romain Bordes, Department of Chemistry and Chemical Engineering, Chalmers University of Technology