Partial Distribution Matching via Partial Wasserstein Adversarial Networks
Artikel i vetenskaplig tidskrift, 2025

This paper studies the problem of distribution matching (DM), which is a fundamental machine learning problem seeking to robustly align two probability distributions. Our approach is established on a relaxed formulation, called partial distribution matching (PDM), which seeks to match a fraction of the distributions instead of matching them completely. We theoretically derive the Kantorovich-Rubinstein duality for the partial Wasserstain-1 (PW) discrepancy, and develop a partial Wasserstein adversarial network (PWAN) that efficiently approximates the PW discrepancy based on this dual form. Partial matching can then be achieved by optimizing the network using gradient descent. Two practical tasks, point set registration and partial domain adaptation are investigated, where the goals are to partially match distributions in 3D space and high-dimensional feature space respectively. The experiment results confirm that the proposed PWAN effectively produces highly robust matching results, performing better or on par with the state-of-the-art methods.

point set registration

partial Wasserstein adversarial network

partial distribution matching

partial domain adaptation

Författare

Ziming Wang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Nan Xue

Ant group

Ling Lei

Wuhan University

Rebecka Jörnsten

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Gui Song Xia

Wuhan University

IEEE Transactions on Pattern Analysis and Machine Intelligence

0162-8828 (ISSN) 19393539 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

DOI

10.1109/TPAMI.2025.3572795

Mer information

Senast uppdaterat

2025-06-03