The new ITER baseline, research plan and open R&D issues
Artikel i vetenskaplig tidskrift, 2025

A new baseline (NB) has been proposed by the ITER Project to ensure a robust achievement of the Projects’ goals, in view of past challenges including delays incurred due to the Covid-19 pandemic, technical challenges in completing first-of-a-kind components and in nuclear licensing. The NB includes modifications to the configuration of the ITER device and its ancillaries (e.g. change from beryllium to tungsten as first wall material, modification of the heating and current drive mix, etc.) as well as additional testing of components (e.g. toroidal field coils) or phased installation (start with inertially cooled first wall before later installation of the final actively water-cooled components) to minimise operational risks. In the NB, the ITER research plan (IRP) will be divided into three main phases: (a) start of research operation, with 40 MW of ECH and 10 MW of ICH, which will focus on the demonstration of 15 MA operation in L-mode, commissioning of all required systems, including disruption mitigation, and the demonstration of H-mode plasma operation in deuterium; (b) DT-1, with 60-67 MW of ECH, 33 MW of neutral beam injection (NBI) and 10-20 MW of ICH, which will demonstrate robust operation in high confinement H-mode plasmas in DT up to Q ⩾ 10 and for burn durations of 300-500 s within an accumulated neutron fluence of ∼1% of the ITER machine’s lifetime total, and; (c) DT-2, with up to 67 MW of ECH, up to 49.5 MW of NBI and up to 20 MW of ICH, with the ITER tokamak and ancillaries in their final configuration to demonstrate routine operation in DT plasmas at high Q and the Q ⩾ 5 long-pulse and steady-state scenarios to the final neutron fluence and to perform R&D on nuclear fusion reactor issues. The logic, physics basis, modelling and experimental evaluations carried out to support the NB and the associated IRP are described. These include the impact of the tungsten wall on plasma scenarios and associated risk mitigation measures, as well as the optimisation of the tokamak components and ancillaries to minimise Project risks. Open R&D issues related to these evaluations and mitigation measures are also described together with experimental, modelling and validation activities required to address them.

open R&D issues

W wall

burning plasmas

heating and current drive

ITER

research plan

Författare

A Loarte

ITER Organization

R. Pitts

ITER Organization

T Wauters

ITER Organization

I. Nunes

ITER Organization

P.C. de Vries

ITER Organization

S.H. Kim

ITER Organization

F. Kochl

ITER Organization

A. R. Polevoi

ITER Organization

M Lehnen

ITER Organization

J. Artola

ITER Organization

S. Jachmich

ITER Organization

A. Pshenov

ITER Organization

X. Bai

ITER Organization

I. Carvalho

ITER Organization

M. Dubrov

ITER Organization

National Research Centre "Kurchatov Institute"

Y. Gribov

ITER Organization

M. Schneider

ITER Organization

L. Zabeo

ITER Organization

X. Bonnin

ITER Organization

S. D. Pinches

ITER Organization

F. Poli

ITER Organization

G. Suarez Lopez

ITER Organization

M. Merola

ITER Organization

F. Escourbiac

ITER Organization

R. Hunt

ITER Organization

L. Chen

ITER Organization

D. Boilson

ITER Organization

P. Veltri

ITER Organization

N. Casal

ITER Organization

M. Preynas

ITER Organization

A. Mukherjee

ITER Organization

W. Helou

ITER Organization

F. Kazarian

ITER Organization

S. Willms

ITER Organization

I. Bonnet

ITER Organization

R. Michling

ITER Organization

L. Giancarli

ITER Organization

J. van der Laan

ITER Organization

M. Walsh

ITER Organization

V. Udintsev

ITER Organization

R. Reichle

ITER Organization

G. Vayakis

ITER Organization

A. Fossen

ITER Organization

M. Turnyanskiy

ITER Organization

A. Becoulet

ITER Organization

Yutaka Kamada

ITER Organization

G. Zhuang

University of Science and Technology of China

G. Xu

Chinese Academy of Sciences

X. Gong

Chinese Academy of Sciences

J. Huang

Chinese Academy of Sciences

M. Jia

Chinese Academy of Sciences

R. Ding

Chinese Academy of Sciences

J. Qian

Chinese Academy of Sciences

Y. Sun

Chinese Academy of Sciences

Q. Yang

Chinese Academy of Sciences

L. Zhang

Chinese Academy of Sciences

M. Xu

Southwestern Institute of Physics China

L. Zhang

Southwestern Institute of Physics China

S. Brezinsek

Forschungszentrum Jülich

J. Stober

Max-Planck-Gesellschaft

J. Hobirk

Max-Planck-Gesellschaft

F.G. Rimini

Culham Science Centre

J. Garcia

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

S. L. Rao

Institute for Plasma Research India

J. Ghosh

Institute for Plasma Research India

D. Sharma

Institute for Plasma Research India

B. Magesh

Institute for Plasma Research India

R. P. Bhattacharya

Institute for Plasma Research India

G. Matsunaga

National Institutes for Quantum and Radiological Science and Technology

H. Urano

National Institutes for Quantum and Radiological Science and Technology

T. Hirose

National Institutes for Quantum and Radiological Science and Technology

K. Ogawa

National Institutes of Natural Sciences

G. Motojima

National Institutes of Natural Sciences

C. Sung

Korea Advanced Institute of Science and Technology (KAIST)

H. H. Lee

National Fusion Research Institute

J. Park

Seoul National University

M. S. Cheon

National Fusion Research Institute

Y. Jeon

National Fusion Research Institute

S. Konovalov

National Research Centre "Kurchatov Institute"

S. Lebedev

Russian Academy of Sciences

N. Kirneva

National Research Centre "Kurchatov Institute"

Yu Kashchuk

The State Atomic Energy Corporation ROSATOM

N. Bakharev

Russian Academy of Sciences

X. Chen

General Atomics

A. Bortolon

Princeton University

L. Casali

University of Tennessee

R. Maingi

Princeton University

F. Turco

General Atomics

K. Schmid

Max-Planck-Gesellschaft

Yueqiang Liu

General Atomics

J. R. Martìn-Solìs

Universidad Carlos III de Madrid

C. Angioni

Max-Planck-Gesellschaft

Istvan Pusztai

Subatomär, högenergi- och plasmafysik

D. Fajardo

Max-Planck-Gesellschaft

D. Mateev

Forschungszentrum Jülich

E. Lerche

Koninklijke Militaire School

D. Van Eester

Koninklijke Militaire School

P. Vincenzi

Consorzio Rfx

Consiglo Nazionale Delle Richerche

R. Futtersack

Culham Science Centre

V. Bobkov

Max-Planck-Gesellschaft

Plasma Physics and Controlled Fusion

0741-3335 (ISSN) 1361-6587 (eISSN)

Vol. 67 6 065023

Ämneskategorier (SSIF 2025)

Fusion, plasma och rymdfysik

DOI

10.1088/1361-6587/add9c9

Mer information

Senast uppdaterat

2025-06-23