FAITHFULNESS OF THE FOCK REPRESENTATION OF THE C*-ALGEBRA GENERATED BY q(ij)-COMMUTING ISOMETRIES
Artikel i vetenskaplig tidskrift, 2018

We consider the C*-algebra Isom(Q), where Q = (q(ij))(i,j=1)(n) is a matrix of complex numbers. This algebra is generated by n isometrics a(1), . . . , a(n) satisfying the relations a(i)*a(j) = q(ij)a(j)a(i)*, i not equal j with max vertical bar q(ij)vertical bar < 1. This C*-algebra is shown to be nuclear. We prove that the Fock representation of Isom(Q) is faithful. Further we describe an ideal in Isom(Q) which is isomorphic to the algebra of compact operators.

Författare

Oleksii Kuzmin

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Nikolay Pochekai

National Research University Higher School of Economics

Journal of Operator Theory

0379-4024 (ISSN)

Vol. 80 1 77-93

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

DOI

10.7900/jot.2017jun01.2172

Mer information

Senast uppdaterat

2025-07-01