Understanding catalyst deactivation in an industrial green hydrotreater and its correlation with catalyst composition
Artikel i vetenskaplig tidskrift, 2025

Understanding and mitigating catalyst deactivation is crucial for enhancing the efficiency of hydrodeoxygenation (HDO) processes in the production of biofuels. In this study sulfided metal catalysts, NiMo/Al2O3, NiMo/SiO2-Al2O3, and NiW/Al2O3 along with bare supports (Al2O3, SiO2-Al2O3, and zeolite Y) were placed in a refinery green hydrotreating unit. Potassium, phosphorus and sodium were identified as major poisons. The HDO activity of spent catalysts was assessed in a lab-scale batch reactor at 58 bar H2 and 325 °C for deoxygenation of oleic acid. The results highlighted that the active metals, particularly NiW, had a more pronounced tendency to attract poisons compared to the supports. However, with bare supports, coking was more significant and simultaneously less poisons were trapped, which could be due to blocking of the pores with coke. In the presence of these poisons there was a significant decline in oxygenate conversion compared with fresh catalysts, with a gradual reduction in activity for both decarbonation and direct-HDO products. Solvent washing treatments with DMSO and water were employed in an attempt to recover the activity of the spent catalysts, by partially removing the poisons. However, through these treatments, the activity of the NiMo/Al2O3 catalyst could not be restored.

Poisoning

HDO

Deactivation

Sulfided catalysts

Fatty acids

Catalyst washing

Författare

Elham Nejadmoghadam

Chalmers, Kemi och kemiteknik, Kemiteknik

Abdenour Achour

Chalmers, Kemi och kemiteknik, Kemiteknik

Olov Öhrman

Preem AB

Derek Claude Creaser

Chalmers, Kemi och kemiteknik, Kemiteknik

Louise Olsson

Chalmers, Kemi och kemiteknik, Kemiteknik

Fuel Processing Technology

0378-3820 (ISSN)

Vol. 276 108260

Koloxidavskiljning, användning och lagring med anrikningssand i Sverige-Möjligheter och utmaningar

Formas (FR-2021-0005), 2022-01-01 -- 2025-12-31.

The Competence Centre for Catalysis, KCK 2022-2026

Johnson Matthey (2500123383), 2022-01-01 -- 2026-12-31.

Preem AB (KCK2022-2026), 2022-01-01 -- 2026-12-31.

Umicore Denmark ApS (KCK2022-2026), 2022-01-01 -- 2026-12-31.

Volvo Group (PO:2435702-000), 2022-01-01 -- 2026-12-31.

Scania AB (Dnr:2021-036543Pnr:52689-1), 2022-01-01 -- 2026-12-31.

Ämneskategorier (SSIF 2025)

Annan kemiteknik

DOI

10.1016/j.fuproc.2025.108260

Mer information

Senast uppdaterat

2025-07-04