A Survey on Active Feature Acquisition Strategies
Preprint, 2025

Active feature acquisition studies the challenge of making accurate predictions while limiting the cost of collecting complete data. By selectively acquiring only the most informative features for each instance, these strategies enable efficient decision-making in scenarios where data collection is expensive or time-consuming. This survey reviews recent progress in active feature acquisition, discussing common problem formulations, practical challenges, and key insights. We also highlight open issues and promising directions for future research.

Författare

Arman Rahbar

Chalmers, Data- och informationsteknik, Data Science och AI

Linus Aronsson

Chalmers, Data- och informationsteknik, Data Science och AI

Morteza Haghir Chehreghani

Data Science och AI 2

Ämneskategorier (SSIF 2025)

Datavetenskap (datalogi)

Mer information

Skapat

2025-07-05