Extending the unconditional support in an Iwaniec–Luo–Sarnak family
Artikel i vetenskaplig tidskrift, 2025

We study the harmonically weighted one-level density of low-lying zeros of L-functions in the family of holomorphic newforms of fixed even weight k and prime level N tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in (formula presenetd). This result was improved by Ricotta–Royer, who increased the admissible support for k ≥ 4 in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all (formula presenetd), where ‚(formula presenetd) 1:866 ... and (formula presenetd) tends monotonically to 2 asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet L-functi

low-lyingzeros

Katz–Sarnakheuristics

holomorphicmodularforms

zero-densityestimates

Författare

Lucile Devin

Chalmers, Matematiska vetenskaper, Algebra och geometri

Daniel Fiorilli

Université Paris-Saclay

Anders Södergren

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Algebra and Number Theory

1937-0652 (ISSN)

Vol. 19 8 1621-1635

Low-lying zeros in families of automorphic L-functions

Kungliga vetenskapsakademien (CRM2020-0008), 2020-05-01 -- 2022-04-30.

L-funktioner, zetafunktioner och gitter i hög dimension

Vetenskapsrådet (VR) (2021-04605), 2022-01-01 -- 2025-12-31.

Ämneskategorier (SSIF 2025)

Matematisk analys

Algebra och logik

DOI

10.2140/ant.2025.19.1621

Mer information

Senast uppdaterat

2025-07-10