Molecular Design, Synthesis and Characterization of Organic Semiconductors for Applications in Photonics and Electronics
Doktorsavhandling, 2025

The study of organic optoelectronic lies at the intersection between the fields of physics, chemistry, and materials science. Organic semiconductors based on benzodiquinoline (BDQ), benzothiadiazoledicarboximide (BTDI), diketopyrrolopyrrole (DPP), indacenodithiophene (IDT), naphthalenediimide (NDI), and quinoxaline (Qx) moieties have been designed for different devices, including organic photovoltaics (OPVs), light emitting electrochemical cells (LECs), organic electrochemical transistors (OECTs) and organic supercapacitors. Special efforts are devoted to developing materials that can be processed from aqueous-based solvents. Over sixty polymers and two small molecular electroactive materials are synthesized. The organic semiconductor characterizations are conducted using gel permeation chromatography, thermal gravimetric analysis, ultraviolet-visible spectroscopy (UV-vis), photoluminescence spectroscopy (PL), and cyclic voltammetry (CV) techniques. Nine BDQ-based polymers are synthesized and characterized. Two BDQ monomers are synthesized in simple and cost-efficient four steps. Five of the BDQ polymers from the dibrominated monomer are wide bandgap, suggesting a potential for applications in ternary OPVs. The tetra-brominated BDQ monomer is used to synthesize two-dimensionally networked thiophene- and BDT-based polymers. Two-dimensional networking results in bandgap lowering and decreased thermal stability. Three BTDI-based terpolymers are synthesized by incorporating small amounts of BTDI monomer as a second acceptor in the PM6 system. The resulting polymers demonstrate excellent thermal stabilities and suitable optical and electronic properties for applications as donors in OPVs. Fourteen DPP-based polymers are synthesized and characterized. Long alkyl spacers generally enhance the thermal stabilities of these polymers. OECT devices from the DPP polymers demonstrate typical OECT characteristics, with peak transconductance up to 2.34 S cm⁻¹ and 99.5% current retention after 315 s operation. Eight IDT-based polymeric and two aqueous processable small molecular organic semiconductors are synthesized and characterized. Two thiophene-based and one benzothiadiazole-based NDI polymers are synthesized. The thiophene-based polymers are processable from aqueous-based solvents. A fully stretchable supercapacitor device prepared from hydrogel using the NDI electroactive polymer-based composite achieves an areal capacitance as high as 29.84 mF cm-2 at a scan rate of 5 mV s-1. Twenty-four Qx-based polymers are synthesized and characterized. Seven of these are based on thiophene-quinoxaline (TQ) moieties, while two are derived from simple selenophene-quinoxaline (SeQ) moieties. Material synthesis cost analysis of both TQ and SeQ polymers reveals their promise as cost-efficient materials. An investigation on the Hansen solubility parameters is conducted. The OEG-decorated TQ and SeQ polymers were found to be soluble in aqueous solvents. Notably, the aqueous-processed all-polymer photovoltaic cells (aq-APPVs) based on the TQ polymer deliver high power conversion efficiency up to 2.27% and open-circuit voltage approaching 0.8 V, which are among the highest values reported for aq-APPVs to date. Additionally, LEC devices are fabricated from TQ polymers. The best device exhibits an emission peak at 670 nm with a peak radiance of 185 µW/m² at a low drive voltage of 2.3 V. Other LEC devices are fabricated using TQ as a host system, exhibiting near-infrared emissions with electroluminescence peaks beyond 900 nm. Overall, this work demonstrates the logical design, synthesis, and application of organic semiconductors for optoelectronic applications. Importantly, it contributes valuable insights into how functional and sustainable organic semiconductors can be designed.

organic electrochemical transistors

optoelectronics

light-emitting electrochemical cells

aqueous processable

low-cost

oligo(ethylene glycol)

supercapacitors

organic solar cells

CNCS, Addis Ababa University
Opponent: Donghong Yu

Författare

Tadele Tamenu Filate

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Addis Ababa University

Organiska föreningar och material har varit en integrerad del av våra liv. De utgör de små byggstenarna i levande organismer, utgör de flesta av de läkemedel vi använder för att behandla olika åkommor och möjliggör utveckling av material som tål extrema temperaturer och som används i toppmodern displayteknik. Små molekyler med hög molekylvikt och polymera organiska material har blivit allt mer förekommande i våra dagliga aktiviteter. En klass av sådana material är de organiska halvledarna. Till skillnad från andra klasser av halvledare är organiska halvledare kolbaserade organiska material. Detta innebär att de uppvisar några av de inneboende egenskaperna hos andra kolbaserade material, såsom plast. Organiska halvledare kan till exempel vara mekaniskt flexibla och lätta, vilket är ovanligt i andra klasser av halvledare. Organiska halvledare kan användas i olika organiska fotoniska och elektroniska enheter, inklusive organiska fotovoltaik (OPV), ljusemitterande elektrokemiska celler (LEC), organiska elektrokemiska transistorer (OECT) och organiska superkondensatorer.

Ett av de stora löftena med att använda organiska halvledare i optoelektroniska enheter är deras lösningsbearbetbarhet. Till skillnad från oorganiska halvledare kan organiska halvledare avsättas från lösningar av vanliga laboratorielösningsmedel. Vanligtvis är klorerade och icke-klorerade aromatiska lösningsmedel de vanliga lösningsmedlen som används för att bearbeta organiska halvledare. Användning av dessa lösningsmedel utgör dock allvarliga miljö- och hälsorisker. Därför har ansträngningar ägnats åt att utveckla polära sidokedjedekorerade organiska halvledare som kan bearbetas från idealiskt gröna lösningsmedel som vatten och alkohol.

Organic compounds and materials have been an integral part of our lives. They form the tiny building blocks of living organisms, constitute most of the drugs we use to treat various ailments, and enable the development of materials that can withstand extreme temperatures and are used in state-of-the-art display technologies. High molecular weight small molecules and polymeric organic materials have increasingly become ubiquitous in our day-to-day activities. One class of such materials is the organic semiconductors. Unlike other classes of semiconductors, organic semiconductors are carbon-based organic materials. This means they exhibit some of the intrinsic properties of other carbon-based materials, such as plastics. For instance, organic semiconductors can be mechanically flexible and lightweight, which is uncommon in other classes of semiconductors. Organic semiconductors can be applied in various organic photonic and electronic devices, including organic photovoltaics (OPVs), light-emitting electrochemical cells (LECs), organic electrochemical transistors (OECTs) and organic supercapacitors.

One of the big promises of applying organic semiconductors in optoelectronic devices is their solution processability. Unlike inorganic semiconductors, organic semiconductors can be deposited from solutions of common laboratory solvents. Usually, chlorinated and non-chlorinated aromatic solvents are the common solvents used to process organic semiconductors. However, the use of these solvents poses serious environmental and health hazards. Hence, efforts have been devoted at developing polar side chain decorated organic semiconductors that can be processed from ideally green solvents such as water and alcohol.

Ämneskategorier (SSIF 2025)

Materialkemi

Polymerkemi

ISBN

978-91-8103-248-2

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5706

Utgivare

Chalmers

CNCS, Addis Ababa University

Online

Opponent: Donghong Yu

Mer information

Senast uppdaterat

2025-11-03